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Abstract—The Advanced Metering Infrastructure (AMI) is one
of the main services of Smart Grid (SG), which collects data
from smart meters (SMs) and sends them to utility company
Meter Data Management Systems (MDMSs) via a communication
network. In the next generation AMI, both the number of SMs
and the meter sampling frequency will dramatically increase, thus
creating a huge traffic load which should be efficiently routed
and balanced across the communication network and MDMSs.
This paper initially formulates the global load-balanced routing
problem in the AMI communication network as an Integer Linear
Programming (ILP) model, which is NP-hard. Then, to overcome
this drawback, it is decomposed into two subproblems and a novel
Software Defined Network (SDN)-based AMI communication
network is proposed called OpenAMI. This paper also extends
the OpenAMI for the cloud computing environment in which
some virtual MDMSs are available. OpenAMI is implemented
on a real test bed, which includes Open vSwitch, Floodlight
controller, and OpenStack, and its performance is evaluated
by extensive experiments and scenarios. Based on the results,
OpenAMI achieves low end-to-end delay and a high delivery ratio
by balancing the load on the entire AMI network.

Index Terms—Industrial Internet of Things (IIoT), Large-scale
AMI, Load balancing for AMI, Communication infrastructure,
Resource management, SDN.

I. INTRODUCTION

INDUSTRIAL INTERNET OF THINGS (IIOT) is a new
communication paradigm that enables real-time monitoring,

which provides a controlling mechanism for industrial domains.
In the context of SG, the vision of deploying IIoT relies on
using reliable communication technologies by employing stan-
dard protocols to perform end-to-end communication between
the centre and smart entities [1]. One of the primary services in
SG is AMI. It is an integrated system of SMs, communications
networks, and data management systems that enables two-way
communication between utilities and customers [2]. AMI uti-
lizes the SG communication infrastructure to transfer metering
data as well as customer consumption-related information [3],
[4].

In the SG networks, Demand Response is utilized to balance
total demand with the amount of supply. Smart consumers
can make decisions autonomously about how and when to use
electricity. By developing the Internet of Things (IoT) tech-
nology, it is possible to transfer customers power consumption
information to the utilities through the existing communication
infrastructure such as AMI network, and develop a demand side
management program to control and schedule the customers
appliances. In demand response approaches, customers change
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their power consumption depending on the energy price. By
utilizing demand response approaches, it is possible to reduce
or shift energy consumption from peak hours to period of less
demand. AMI communication infrastructure can be utilized
to transfer customer energy consumption. AMI not only can
transfer SMs data, but also facilitates utilities to perform de-
mand response programs [5]–[7]. In [8] an AMI infrastructure
is introduced which checks the customers energy consumption
and controls the electric energy used with the demand response
techniques. In [9], a micro-grid system consisting of some
energy sources and AMI infrastructure has been implemented.
Based on the price of energy market, the customers power load
are scheduled. The consumption information and the energy
price is communicated through the existing AMI network.

So, in AMI networks, a critical issue is establishing a
reliable, scalable, and secure communication network that can
meet Quality of Service (QoS) requirements [10]. As inves-
tigated in [11], QoS is an essential component of the overall
architecture in SG. Real-time transferring of metering data from
the customer side (Smart Meter) to the utility’s MDMS needs
a QoS-support communication infrastructure able to guarantee
low end-to-end delay and a high packet delivery ratio [12],
[13].

On the other hand, AMI service is rapidly spreading and
many utility companies prefer to develop this service in order
to remotely gather consumption information from the customer
side. In the large-scale AMI, there are many SMs located in
different regions which should transfer metering and related
consumption information to the MDMS through some interme-
diate nodes, such as concentrators or switches [14], [15]. The
essence of routing mechanisms in the AMI network may cause
an inefficient use of network resources [16]. Also, the current
AMI communication network is limited to small-scale local
regions which do not satisfy the mentioned QoS requirements
for the next generation large-scale AMI. Thus, for the efficient
management of this high-volume data, it is extremely critical
to utilize new communication technologies.

Recently, introduced Software Defined Networking (SDN)
is a major trend in the telecommunication industry that can
enhance the SG networks [17]. In SDN, the control and
data planes are separated and logically centralized using the
OpenFlow protocol [18]. It can meet the requirements of the
AMI communication network [19]. In this case, each network
switch simply forwards the traffic and enforces policy according
to instructions received from the controller. This makes the
network programmable in a way that promises to be more
flexible, scalable, and secure than that of traditional networks
[18]. SDN has attracted attention for developing different
SG applications which require a higher degree of network
awareness [19]–[25].
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A. Motivations

Why do we need a scalable AMI communication infrastruc-
ture? Knowing that the AMI infrastructure is a key service in
SG, it is vital to design and develop a high performance and
scalable communication infrastructure with quality of service
support. Recently, the AMI has been utilized for supporting
new services in the energy market, such as managing household
appliance usage based on current tariffs and electricity rates
[5]. In addition, the AMI is rapidly developing and spreading in
different geographical locations. Moreover, for the future large-
scale AMI, it will be necessary to collect and transfer energy
consumption information from each customer appliance [7].
Therefore, this will create a huge traffic load which should be
efficiently routed and balanced across the network and MDMSs.

It should also be noted that in many AMI systems, data
is collected from SMs every 15 minutes. Although this is a
significant improvement (compared with the traditional way
that only records the meter data once a month), it is far from
enough in achieving the full vision of a SG [26].

To summarize, with the overall modern SG road map, both
the number of SMs and the sampling frequency on a meter will
increase dramatically. Consequently, a huge amount of data will
go through the MDMS, which imposes a great challenge on the
scalability of the traditional AMI communication network [26].

B. Contributions

The main contributions of our work can be summarized as
follows:

- Theoretical aspect
In order to provide the communication requirements of the AMI
network, a reliable, secure, and scalable communication proto-
col should be utilized. This paper proposes using the Session
Initiation Protocol (SIP) to transfer AMI packets between the
customer side and utility company. As will be explained later,
the SIP protocol has many unique benefits for use in the AMI
network. SIP is a mature protocol that is consistent with all
current standards and architectures for the AMI and fulfills
many of the device communication requirements. Therefore,
a SIP-based SM and MDMS are proposed to serve as the
communication interface to the AMI network.

On the other hand, the future large-scale AMI will merge
with demand response and energy management systems. The
volume of the traffic load transferred by the future large-scale
AMI network is rapidly increasing. This may cause overload
and congestion for the AMI intermediate nodes and MDMS
servers. As a result, optimized traffic engineering and overload
control should be applied. This paper presents an optimization
problem to route the traffic on the AMI communication infras-
tructure and balance the load on the entire network. It is proven
that when there are limited resources, the mentioned problem is
NP-hard. A decomposition approach is proposed to solve this
issue.

- Implementation
We present OpenAMI which is an SDN-based platform for
the future large-scale AMI. Regarding the above mentioned
decomposition approach, OpenAMI consists of different com-
ponents, including flow monitoring, admission control, MDMS

load estimation, MDMS and path selection. We also extend
OpenAMI for the cloud computing environment in which
some virtual MDMSs are available. In this case, OpenAMI
benefits from resource scaling advantages. By dynamic resource
scaling, the overload condition of the virtual MDMS can be
mitigated. OpenAMI has been implemented on a real test bed.
By extensive experiments and scenarios, its performance has
been evaluated.

C. Organization

In what follows we begin reviewing the related work in
Section II and then defining the problem in Section III. Then,
the proposed architecture and model are illustrated in Section
IV. Next, Section V presents implementation and performance
evaluation results that confirm the superior performance of the
proposed model. Finally, Section VI gives the concluding marks
of the paper.

II. RELATED WORK

This section discusses state-of-the-art research that uses SDN
technology in SG. Application of SDN technology in SG has
received considerable attention over the past few years.

[1] proposes a SDN platform based on IIoT to support
resiliency by reacting immediately whenever a failure occurs.
This renders real-time monitoring techniques of SG network
possible. [17] presents the potential of SDN for strengthening
the resilience of SG, even under catastrophic circumstances.
As mentioned in [19], ease of configuration and management,
cross-domain content-based networking, virtualization, and iso-
lation are some of the opportunities offered by SDN in SG
networks. Molina et al. [20] propose to integrate SDN in IEC-
61850-based substation automation systems. In [21], Sydney
et al. use SDN to provide an automatic fail-over method for
SG networks. In addition, [22] focuses on how SDN can
supply resilience to distribution substations with self-recovery.
Considering the requirements of SG, Dorsch et al. [24] establish
a test bed based on SDN for communications in IEC-61850.
[25] investigates the use of SDN in heterogeneous SG so
as to create a self-configuration infrastructure and implement
it based on dissimilar technologies, such as IEEE 802.11
and Ethernet. In [27], the authors analyze local as well as
central mechanisms for fast failover in software-defined SG
communication networks.

Overall, despite the findings of these studies, the benefit
of SDN for the AMI communication network remain largely
unexplored. Moreover, the AMI load balancing problem is
also an open and challenging issue because of the resource
limitations of a large-scale AMI.

In the following, we introduce four of the state of the art
in load balancing which are close enough to our work and in
the performance evaluation section we compare the results of
our proposed mechanism with these four papers ( [28]–[31]).
It is important to note that none of these methods are based on
SDN.

In [28], a load balanced routing is introduced in the path
identified by Hybrid Wireless Mesh Protocol (HWMP) for AMI
wireless mesh networks. This mechanism uses airtime link
metric as path selection parameter to avoid congestion. In such
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cases, links with larger airtime link metric are avoided by the
path selection process. They are, however, inevitably allowed
in some unavoidable conditions.

In [29], a session-aware admission control algorithm
(SAMbA) is proposed. SAMbA builds a minimized set of
sessions among applications and Intelligent Electronic Devices
(IEDs) to adjust the load. SAMbA comprises two components:
the SAMbA-Portal and the SAMbA-Session Controller that
deploys a session-based admission control approach.

In [30], the authors attempt to prevent server overload by
balancing the load among available servers using an implicit
mechanism called History Weighted Average Response time
(HWAR). In this mechanism, each server has a corresponding
window in a load balancer. The contents of each window are
the history of server’s response time, which is used to estimate
the load being currently processed on servers.

In [31], a Transaction Least-Work-Left (TLWL) algorithm
routes a new request to the server with the least load using
a load balancer and set of counters. The counters specify the
weighted sum of the transactions assigned to each server. A
new request is passed to the server with the lowest counter.

III. PROBLEM DEFINITION

Assume that an AMI communication network can be mod-
eled as graph G = (V,E), where V represents the set of
switches and E represents the set of links. Let |V | = n
and |E| = m, the number of switches and the number of
links, respectively. This graph connects k SMs to w MDMSs
(Fig. 1). The information of all MDMSs is synchronized to
a central MDMS that, without loss of generality, we can
connive it. Each SM either directly or through a concentrator
connects to a network switch. Each link e ∈ E has a cost
ce and consumes re units of available resources. The resource
consumption of each switch and MDMS is also denoted by rs

and rm, respectively. δm, δs, and δe represent the remaining
resources of each MDMS, switch, and link, respectively. Costs
and resources are assumed to be non-negative. The goal is to
find the least cost (shortest) path from source node s (smart
meter) to target node t (the most appropriate MDMS) that
satisfies the resource limits of the MDMSs, switches and links.
In other words, the objective of the problem is to balance
the load of the entire network, including link load balancing,
switch load balancing, and MDMS load balancing, in order to
efficiently use resources and consequently achieve low end-to-
end delay and a high delivery ratio. Generally ce is considered
as a hop count. Therefore finding a path which satisfies the
above constraints is equal to finding a path with minimum
hop counts in consideration of limited resources. If resource
restrictions are not satisfied, then an overload occurs.

Prior to proposing the approach, we prove that the problem
of global load-balanced routing in the AMI communication
network is an ILP problem and is, therefore, NP-hard.

Proposition 1. The global load-balanced routing problem in
an AMI communication network with limited resources is an
ILP problem.

Proof: Let P be the set of all routes from s to t. For any
path p ∈ P , a binary variable up is introduced, and cp and rp

Smart Meters

MDMSs

Figure 1. AMI communication network

are used to denote the total cost and resource consumption of
p, respectively. The constrained resource problem is:

minimize
∑

p
cpup (1)

subject to:∑
p
up = 1, (2)∑

m∈p
rmp up ≤ δmp , ∀p ∈ P (3)∑

s∈p
rspup ≤ δsp, ∀p ∈ P (4)∑

e∈p
repup ≤ δep, ∀p ∈ P (5)

Variables: up ∈ {0, 1}

that is, finding a route p which the resource consumption
is bounded by δp and the cost is minimized. Constraint (2)
guarantees that exactly one path is selected and constraints
(3-5) ensure that this path is feasible, i.e. the total resource
consumption of the path satisfies the resource constraints. Also,
the objective function ensures that the cheapest feasible path is
chosen. The binary variable up renders the model an ILP which
is generally NP-hard and cannot be solved in polynomial time.
■

To overcome this drawback and reduce complexity, the
problem is decomposed into two subproblems (MDMS selection
subproblem and Path selection subproblem), which are solved
in two phases. Since MDMS resources are more critical than
those of switches and links, the constraints of MDMS resources
are first met, and then an appropriate path with respect to the
selected MDMS is found. In this regard, a SDN-based frame-
work is proposed for the AMI communication network which
considers subproblems as SDN applications in the application
plane. This framework benefits from SDN’s ability to provide
a global view of the entire network.

IV. PROPOSED ARCHITECTURE AND MODEL

A. AMI Communication Protocol

In the large-scale AMI, SMs should be able to send a
large amount of collected data to the MDMSs and to receive
operational commands. This, however, may lead to overload.
Therefore, a standard and highly reliable communication pro-
tocol is required for transferring this high volume of data. The
AMI’s current communication protocol is limited to small-
scale local regions, which do not yet meet the demanding
communication requirements of the next generation AMI.
There are a number of core requirements for the large-scale
AMI communication protocol, including scalability, reliability,
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Figure 2. The proposed architecture of the SDN-based AMI communication
network (OpenAMI)

flexibility, routability, and security [10]. Given our observation
that all of these requirements are already presented in the
Session Initiation Protocol (SIP) [32], we propose to use SIP
as the AMI communication protocol.

SIP was originally developed as an IETF (Internet Engi-
neering Task Force) protocol for use in the next generation
telephony, initially for voice calls over an IP infrastructure but
also with the intention of being general enough for adoption
in many different environments. SIP is a mature protocol and
has proven to be reliable, scalable, and secure. It can transmit
any type of data and uses a wide variety of messages, such
as Invite and Bye, to initiate and terminate a connection
between endpoints.

In conclusion, SIP can operate very well in a peer-to-peer
AMI network in which there is communication between SMs
and MDMSs. In this regard, Register, Invite, Ack, and
Bye messages are used to register SMs, initiate a new AMI
connection, exchange data, and terminate an AMI connection,
respectively. In addition, each SM (and MDMS) is attached
with an embedded SIP module to serve as the communica-
tion interface to the network infrastructure. Together, the SM,
MDMS, and embedded SIP module form an SIP-based SM
(S-SM) and an SIP-based MDMS (S-MDMS).

B. AMI Communication Network

In this paper we introduce a novel SDN-based AMI com-
munication network (OpenAMI), as shown in Fig. 2. The
infrastructure plane includes S-SMs, S-MDMSs, and Open-
Flow switches. The data generated by S-SMs, such as demand
response information, will be routed to the proper S-MDMS
via OpenFlow switches and the SIP protocol. Meanwhile, the
other direction of data flow, such as control information or
price broadcasting, can be also sent from S-MDMSs to S-
SMs via these switches and SIP messages. Since the AMI
consists of a large number of S-SMs that generate a large
amount of data, a centralized control plane is required for
effective resource management. By using OpenFlow messages,
the controller also collects up-to-date switch network state
information, such as the available capacity of switches and
links. It requests various statistics from the switch network
by sending FEATURE-REQUEST messages and, in return, the
switch network sends FEATURE-REPLY messages containing

the requested statistics1. In addition, the network topology is
obtained using the Link Layer Discovery Protocol (LLDP). A
variety of AMI services and applications can be applied in
the OpenAMI application plane. Communication between the
planes is conducted with OpenAPIs, such as the OpenFlow
protocol.

With OpenFlow’s help, the OpenAMI controller has a global
view of AMI resources. OpenAMI also takes advantage of SIP.
Thus, in terms of control and management, it provides excellent
scalability and flexibility to large-scale AMIs.

C. OpenAMI for Global Load-balanced Routing

This paper proposes that the OpenAMI solve the global load-
balanced routing problem, as shown in Fig. 3.

Upon receiving an AMI message (encapsulated in a SIP
message), the OpenFlow switches encapsulate it into a
Packet-In message and then send it to the controller for
determining the S-MDMS and path. The Flow Monitoring
application then categorizes these messages in to three queues
and stores the Connection-ID of the messages; in this way,
the various connection messages can be distinguished from
each other. The task of the Admission Control application is
deciding whether to admit or drop the new AMI connection
requests (Invite messages), in regard to the total capacity
of S-MDMSs. The S-MDMS Load Estimation application uses
response time (connection establishment delay) as a criterion
of each S-MDMS’ load. The response time is the period from
the forwarding of Invite to the receiving of 200 Ok. The
S-MDMS Selection application selects the S-MDMS with the
least response time for serving admitted Invite messages.
The task of the Path Selection application is to find the shortest
path to the selected S-MDMS which meets the constraints
of switch and link resources. Note that S-MDMS and path
selection are conducted for Invite messages and the rest
of that connection’s messages follow it. Finally, the Rules
Handler application has the duty of creating rules. This causes
the controller to send OpenFlow rules to switches through
Flow-Mod messages. In the following, all of the mentioned
applications are explained in detail.

1) Flow Monitoring: The proposed Flow Monitoring appli-
cation includes a Deep Packet Inspection (DPI) module which
is able to detect and classify messages. By inspecting messages,
the DPI module classifies them into three classes, namely Invite,
200 Ok, and ACK & etc. Moreover, the connection information,
including ID, is extracted from the messages and stored.

2) Admission Control: The Admission Control application
is implemented based on a finite state machine, as shown in
Fig. 4. Suppose that the capacity of each S-MDMS is C and
the total capacity of S-MDMSs is C. C means that how many
connections in a time unit can be processed by an S-MDMS.
Also, the total number of all S-MDMS active connections in
the time unit is shown by N. In fact, N is a counter which
increases by one number with the admission of an Invite
message. When receiving the Bye message of that connection,

1These messaging mechanisms are described in detail in Open-
Flow specification [OpenFlow switch specification - Online Available:
http://archive.openflow.org/wp/documents/]
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it understands that the process of that connection is finished by
S-MDMS and so it consequently decreases by one number.
C and N are the inputs of this state machine; its output is one

of three actions: admit, drop, or drop with a certain probability.
Moreover, this state machine has three states: normal, overload
prevention, and overload control.

When N is less than αC, the state is normal and all of the
newly received AMI connection requests are admitted. If N
is more than αC but less than βC, the state is in overload
prevention. In this situation, S-MDMSs are not overloaded.
However, to avoid an overload, some percent of the requests,
with the probability of N−αC

βC−αC , are dropped. In the case that
N is more than βC, an overload is imminent. Consequently,
all of the received requests are dropped in order to prevent
saturation of S-MDMS resources. Therefore, this mechanism
is a proactive method of managing S-MDMS resources.

The α and β (0 ≤ α < β ≤ 1) coefficients represent the
degree of rigor for dealing with the S-MDMS overload. This
means that, if one gives them a small value, the use of resources
will be less and this is also true for the number of connections.
Meanwhile, with the fast drop of requests, an overload will
never take place. However, if one has larger values for α and
β, more requests are admitted and consequently more S-MDMS
resources are used. Nevertheless, the probability of overloading,
due to the lack of resources, will increase. Therefore, fine-
tuning coefficients for a trade-off between efficiency and re-
sources is vital.

3) S-MDMS Load Estimation: OpenFlow does not provide
any information about the status of each S-MDMS. Hence, in
order to select the best S-MDMS for assigning its admitted
request, OpenAMI should be able to estimate the future status
of each S-MDMS. To this end, we use the history of each S-
MDMS response times, because it can serve a good measure
of the S-MDMS’ future status.

The S-MDMS Load Estimation application employs a sepa-
rate window for each S-MDMS (Fig. 5). Each window contains
the response time history of the S-MDMS over time. The
size of the window is ρ. xi is the value of the ith response
time and f is the vector of the response time history. The
aim is to obtain an estimation of xi+1 (x̂i+1) in regard to f
and a prediction system. One of the best prediction systems
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Figure 4. The finite state machine of the Admission Control application
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that provides a trade-off between accuracy, complexity, and
responsiveness is Normalized Least Mean Square (NLMS).
That is why this filter is applied as the prediction system in the
MDMS Load Estimation application. Details will be provided
in the following section.

Given a vector of ρ observations of xi, f(xi) =
[xi, xi−1, . . . xi−ρ+1], generates the estimation x̂i+1 of the
value xi+1. The NLMS filter coefficients are time differing and
are tuned on the basis of the feedback information taken by
error εi, that εi = xi+1− x̂i+1. The vector of filter coefficients
with hi is specified. The values of h adjust dynamically in
order to decrease the Mean Square Error. The NLMS performs
the following: 1- Initializes the coefficient h0; 2- For each new
data, the filter hi is updated based on the recursive equation:

hi+1 = hi + µ
εif(xi)

∥ xi ∥2
(6)

where ∥ xi ∥2= f(xi)f
T (xi) and µ is a fixed parameter

called step size. Pursuant to [33], NLMS converges so long
as 0 < µ < 2. At time i, the values xi+1, hence εi, are not
known. Therefore, the value εi−1 is used instead and the one
step NLMS predictor update equation becomes:

hi+1 = hi + µ
εi−1f(xi−1)

∥ f(xi−1) ∥2
(7)

Algorithm 1 presents the NLMS algorithm formulation for
our system, where f(xi) and x̂i+1 are the input and output of
the predictor, respectively.

4) S-MDMS Selection: The up-to-date output of the S-
MDMS Load Estimation application always exists in a database
(see Fig. 3). This database includes w pairs of <S-MDMS,
x̂i+1> and represents the up-to-date value of x̂i+1 for each
S-MDMS.

By searching the database, the S-MDMS Selection applica-
tion chooses the pair with the minimum x̂i+1. In other words,
among the w S-MDMS’s, the S-MDMS with the minimum
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Algorithm 1: NLMS for S-MDMS Load Estimation

1 Parameters: ρ =filter order, µ =step size
2 Initialize: h0 = 0
3 for i = 1, 2, ... do
4 f(xi) = [xi, xi−1, . . . xi−ρ+1]

5 hi = hi−1 + µ εi−1f(xi−1)

∥f(xi−1)∥2

6 ∥ f(xi) ∥2= f(xi)f
T (xi)

7 εi = xi − x̂i

8 x̂i+1 = hif
T (xi)

9 end

x̂i+1 is selected. Because the minimum x̂i+1 indicates the
S-MDMS with the least load, it is assigned to the admitted
AMI connection request. Finally, the controller has a list which
includes <S-MDMSξ, connectionζ> pairs, thus indicating that
S-MDMSξ has been selected for handling the connectionζ .

5) Path Selection: The Path Selection application solves the
path selection subproblem. This subproblem seeks the shortest
path between S-SM and the selected S-MDMS in consideration
of the limitation of resources of switches and links. In other
words, this subproblem is to minimize the cost c of path p from
S-SM to the selected S-MDMS, while keeping rsp and rep under
the given constraints δsp and δep, respectively. As previously
mentioned, by using OpenFlow messages, the controller is
able to collect the values of δs and δe and consequently
δsp =

∑
s∈pδ

s and δep =
∑

e∈pδ
e. To describe this formally,

the path selection subproblem is looking for an optimal path:

p∗ = argmin{cp : p ∈ P and rsp ≤ δsp, r
e
p ≤ δep} (8)

We propose using the Lagrangian Relaxation Based Aggre-
gated Cost (LARAC) [34] method, which is a polynomial time
algorithm that efficiently finds a satisfactory path. LARAC is
based on Lagrange relaxation. Lagrange relaxation is a usual
method for determining lower bounds and finding solutions for
this problem. The Path Selection application runs the LARAC
algorithm to solve the subproblem for a given source S-SM and
destination S-MDMS. Then, the controller updates the switches'
flow tables accordingly. Hence, the routes are dynamically
set. The following explains how the mentioned subproblem
is solved with the LARAC algorithm. Before that, Eq. (8) is
reformulated in the form of Eq. (9):

p∗ = argmin{c(p) : p ∈ P and ϑ(p) ≤ ∆p} (9)

c(p) represents the cost of entire path p, which is the same as
cp. The total consumed resources and total remaining resources
of path p (including switches and links) are shown by ϑ(p) and
∆p, respectively.

LARAC is based on the heuristic of minimizing the cλ :=
c+ λϑ modified cost function. cλ denotes the aggregated cost.
For a given fixed λ, one can easily calculate the minimal path
(pλ). If λ = o and ϑ(pλ) ≤ ∆p, then an optimal solution for
the original problem can be found as well. If ϑ(pλ) > ∆p, λ
must increase to augment the dominance of resources in the
modified cost function. Thus, λ is increased while the optimal

solution of cλ suits resource requirements. For a given λ, define
L(λ) as:

L(λ) = min{cλ(p) : p ∈ P} − λ∆p (10)

Then L(λ) is a lower bound to problem (9) for any λ ≥ 0
(proof in [34]). Note that min{cλ(p) : p ∈ P} is the same as
the minimum aggregated cost of a path with respect to a given
value of λ. This can be easily arrived at by applying Dijkstra’s
algorithm with the aggregated cost. It should be remembered
that the path which has a minimum aggregated cost with respect
to a given λ is denoted as pλ. Then L(λ) = cλ(pλ)−λ∆p and
the duality of Eq. (10) can be offered in the following form:

L∗ = max{L(λ) : λ ≥ 0} (11)

The problem of maximizing L(λ) is called the Lagrangian
dual problem. The value of λ that achieves the maximum L(λ)
is indicated by λ∗. Note that L∗, the optimum value of Eq.
(11), is a lower bound on the optimum cost of the path solving
the corresponding problem. The main issue in solving Eq. (11)
is how to search for the optimal λ and determining the criterion
for stopping the search. One such efficient search procedure is
the LARAC algorithm provided as follows (Algorithm 2).

Algorithm 2: LARAC for Path Selection

1 Procedure LARAC (s,t,c,ϑ,∆)
2 pc = Dijkstra(s, t, c)
3 if ϑ(pc) ≤ ∆p then
4 return pc
5 end
6 pϑ = Dijkstra(s, t, ϑ)
7 if ϑ(pϑ) > ∆p then
8 return There is no solution
9 end

10 for i = 1, 2, ... do
11 λ = c(pc)−c(pϑ)

ϑ(pϑ)−ϑ(pc)

12 r = Dijkstra(s, t, cλ)
13 if cλ(r) = cλ(pc) then
14 return pϑ
15 end
16 if ϑ(r) ≤ ∆p then
17 pϑ = r
18 end
19 else pc = r
20 end
21 where Dijkstra(s, t, c) returns a c-minimal path between
22 the source node s and destination node t.

In the first step, the algorithm computes the shortest path
for cost. If the path found meets the resource constraint, this
is the optimal path. Otherwise, the algorithm stores the path
as the latest infeasible path, called pc. Then, the algorithm
specifies the shortest path for resources, denoted as pϑ. If pϑ
is infeasible, there is no solution in this instance.

In the second step, set λ = c(pc)−c(pϑ)
ϑ(pϑ)−ϑ(pc)

. With this value of
λ, one can find a new cλ-minimal path r. If cλ(r) = cλ(pc) =
cλ(pϑ), then the optimal λ is obtained pursuant to claim 5 of
[34]. Otherwise, set r is the new pc or pϑ depending on whether
r is infeasible or feasible.
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Figure 6. OpenAMI for virtual S-MDMSs scaling

D. OpenAMI for Virtual S-MDMS Resource Scaling

Network Function Virtualization (NFV) can contribute to
the SDN and partly overcome resource constraints through the
virtualization of network devices and functions [35].

In this section, OpenAMI is extended so as to benefit
from the advantages of virtualization in the scaling of S-
MDMS resources. Resource scaling is a technique for adjusting
resources in regard to demands that increase the scalability
of the network. As shown in Fig. 6, in the proposed system
all networking resources (such as switches) are under the
control of SDN controller, while all other resources (such as
virtual S-MDMSs) are under the control of NVF orchestration
(NFVO). More specially, the SDN controller is responsible for
computing the forwarding tables for all switches. On the other
hand, the NFVO is responsible for managing all computing and
storage resources. It keeps all the necessary information about
virtual machines and physical hosts. In the infrastructure layer,
hypervisors run on physical servers to support Virtual Machines
(VMs) that implement S-MDMSs. As a result, customizable
and programmable virtualized S-MDMSs running as software
within VMs are provided. In the control plane, the NVFO
manages the virtual S-MDMSs and the SDN controller manages
the switch network. In the application plane, the Admission
Control application changes to the Virtual S-MDMS Resource
Management application. The task of the proposed Virtual S-
MDMS Resource Management application is to make decisions
about the scaling of virtual S-MDMSs in regard to the incoming
load (Fig. 7). Therefore, if N≤αC, the state is in underload
and the virtual S-MDMS with the minimum response time is
scaled down. If N≥βC, the state is in overload and the virtual
S-MDMS with the maximum response time is scaled up. In
addition, if αC<N<βC, the state is in normal load and no
action is performed. As the rest of the applications are similar
to the previous plan, it is unnecessary to re-explain them.

Scale down  Scale up  

Overload Underload
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load
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Figure 7. The finite state machine of the Virtual S-MDMS Resource Manage-
ment application

V. IMPLEMENTATION AND PERFORMANCE EVALUATION

To evaluate the performance of the proposed approach, the
topology in Fig. 8 is employed. This topology includes 2 S-
MDMSs (P1 and P2), 7 OpenFlow switches (S1 to S7), and 1
controller (OpenAMI controller). The bandwidth of each link
is 10 Mbps. Here we use Open vSwitch v2.4.1, Floodlight v1.2,
and Kamailio v4.3.6 to implement the OpenFlow switches,
controller, and S-MDMSs, respectively. The applications are
implemented as a module running atop the controller. The
nDPI engine is used to implement the DPI module. The open
source SIPp software is also utilized to implement the S-SMs
and inject the traffic. OProfile software measures the CPU and
memory usage. We generate the background traffic by having
iperf send packets at a fixed rate. Each experiment is run three
times and the average is taken as the result. α and β are
considered 0.65 and 0.95, respectively. ρ and µ are chosen to
be 30 and 0.8, since they produce a satisfactory performance
based on the analysis of the results. We run several tests to
tune this parameter. A photograph of our implementation setup
is given in Fig. 9.

A. The First Experiment: Constant Offered Load

The first experiment includes two scenarios with different
background traffics. In Scenario 1, the background traffic of
both S-MDMSs is equal at 50 requests per second (rps);
however, in Scenario 2, the background traffic of P1 and P2 are
100 rps and 50 rps, respectively. Then, a constant offered load
of 300 rps is injected in to the network for 100 seconds. In this
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Figure 8. The test bed of OpenAMI
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Table I
OPENAMI CONTROLLER PERFORMANCE

Evaluation Criteria Scenario Time (second)
10 20 30 40 50 60 70 80 90 100

Throughput of OpenAMI controller (fps) ∼ 1 297 299 293 300 295 300 295 293 294 294
2 299 296 300 294 295 296 294 297 298 296

Response time of OpenAMI controller (s) ∼ 1 0.0063 0.0072 0.0055 0.0086 0.0064 0.0092 0.0061 0.0057 0.0046 0.0074
2 0.0051 0.0092 0.0063 0.0044 000.89 0.0056 0.0067 0.0076 0.0083 0.0064

CPU consumption of OpenAMI controller (%) ∼ 1 33.60 32.10 30.50 25.54 22.67 25.96 28.41 26.11 23.25 25.32
2 33.62 27.94 28.22 27.89 34.31 25.27 32.86 31.41 26.93 26.52

Memory consumption of OpenAMI controller (%) ∼ 1 26.87 20.40 21.22 22.84 28.16 23.78 19.18 26.52 23.37 26.79
2 26.64 28.49 30.97 23.22 27.85 26.92 26.31 26.05 25.09 26.47

 

Figure 9. The implementation setup of OpenAMI

experiment, three mechanisms are used in order to implement
the S-MDMS Selection application: the proposed method (based
on response time), round-robin, and random.

Fig. 10 presents the total requests that are successfully
delivered to S-MDMSs (Delivered Requests or DR), End-to-
End Delay (EED), and the utilized CPU of S-MDMSs (due
to space limitations, memory results are not provided). In both
scenarios, the DR of the proposed method are almost equal and
closer to the offered load (Fig. 10 (a) and (d)). However, the
DR of the other two mechanisms worsened in Scenario 2. The
reason for this is that the background traffic of the S-MDMSs
is different in Scenario 2. This causes the load distribution of
these two mechanisms to work blindly. Consequently, the EED
and utilization of resources increase (Fig. 10 (b), (c), (e) and
(f)). The resource utilization of both S-MDMSs in the proposed
method is almost equal, representing an informed and fair load
distribution.

Fig. 11 presents more results about the proposed method. The
DR of each S-MDMS is illustrated in Fig. 11 (a). In Scenario
1, the DR of both S-MDMSs are almost equal (∼150 rps). In
Scenario 2, the DR of P2 (∼199 rps) is almost two times that
of P1 (∼98 rps). This is because the background traffic of P2
is equal to half of the background traffic of P1 in Scenario 2;
consequently, more loads are allocated to P2.

Fig. 11 (b) and (c) demonstrates the average link utilization
and average CPU consumption of the switches. In essence,
these figures show that the best paths have been selected for

forwarding the request message to P1 and P2. The path <S1,
S2, S6> is utilized for forwarding requests to P1 and the paths
<S1, S3, S4, S7> and <S1, S3, S5, S7> are for forwarding
requests to P2. These paths are the shortest existing paths that
also observe the resource limitation. Therefore, the load has
been well balanced among the links (and switches) and their
resources have been fairly used. For example, the utilization
of link <S1, S3> is almost two times that of links <S3, S4>
and <S3, S5>; Moreover, the CPU usage of S3 is twice that
of switches S4 or S5. In Scenario 2, note that the paths to P2
(<S1, S3, S5, S7> and <S1, S3, S4, S7>)is more congested
compared with those of P1 (<S1, S2, S6>).

Table I shows the throughput, average response time, and
resource utilization of the OpenAMI controller. The controller's
throughput is the number of serviced flows per time unit. The
average response time of the controller is the period between
forwarding the Packet-In message from a switch to the time
of receiving the Flow-Mod message from the controller. The
results are almost equal in both scenarios. The average through-
put of the controller is about 296 fps and its average response
time is about 6ms. Therefore, OpenAMI is able to achieve a
high throughput with low delay. The resource utilization of the
controller indicates that the designed applications do not force
extra overhead on the controller. Consequently, the controller
is not a bottleneck.

B. Second Experiment: Variable Offered Load

The performance of OpenAMI with a variable offered load
is assessed in this experiment. As observed in Table II, the
offered load starts at 150 rps and gradually goes up to 450 cps
(to the 300th second). Then, with a sudden drop at the 300th

second, it drops down to 150 rps and, at the 400th second, it
ramps back to 450 rps with a sudden spurt. In the last 100
seconds, the offered stabilizes at 300 rps.

Regarding the considered α and β values, in the first and
second 100 seconds, the state of the Admission Control applica-
tion is normal (N≤αC) along with that of overload prevention
(αC<N<βC), respectively. In these 200 seconds, the total DR
of the S-MDMSs is close to that of the offered load. At the
200th second, the state of the Admission Control application
changes to overload control (N≥βC). In this state almost all
resources of the S-MDMSs are used. Consequently, overcapac-
ity requests are dropped and the rejection rate increases (note
that the total capacity of the S-MDMSs is 400 rps). With the
end of the overload at the 300th second, OpenAMI has again
succeeded to bring the DR close to the offered load. Unlike the
gradual increase of the offered load in the first 300 seconds, an
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Figure 10. OpenAMI performance with a constant offered load
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Figure 11. Performance of the proposed method in the first experiment

Table II
OPENAMI PERFORMANCE WITH VARIABLE OFFERED LOAD

Time (s) 0-100 100-200 200-300 300-400 400-500 500-600

Offered load (rps) ∼ 150 300 450 150 450 300

Total DR of S-MDMSs (rps) ∼ 146 296 385 147 386 297
Rejection rate (%) ∼ 2.66 1.33 14.44 2 14.22 1

Avg. CPU usage of P1 (%) 32 66 98 34 100 64
Avg. CPU usage of P2 (%) 34 64 100 32 97 66

Avg. memory usage of P1 (%) 31 60 98 30 99 60
Avg. memory usage of P2 (%) 30 59 99 31 98 58

immediate congestion takes place at the 400th second. Again,
OpenAMI has been able to properly use the capacity of S-
MDMS. Immediate congestion occurs when a large number
of S-SMs simultaneously make connections and a heavy load
is forced on the network (for example, after the elimination
of a malfunction). As a result, The stability of OpenAMI is
indicated by a high DR in sudden fluctuations of the offered
load.

Table III
VM FLAVOR SPECIFICATIONS

Flavor Memory (MB) vCPUs Disk (GB)

m1.small 2048 1 20
m1.medium 4096 2 40

m1.large 8192 4 80
m1.xlarge 16384 8 169

C. Third Experiment: S-MDMS Virtualization

In the time periods [200, 300]sec and [400, 500]sec in the
previous experiment (when the incoming load is greater than
the S-MDMSs resources), OpenAMI can achieve a DR close
to the offered load with S-MDMS virtualization (by scaling
up the resources of the virtual S-MDMSs). Moreover, during
[300, 400]sec, one can release the extra resources in spite of
having achieved a DR close to the offered load (by scaling
down the resources of the virtual S-MDMSs). To provide virtual
S-MDMSs in the test bed and to manage them by NVFO, the
OpenStack software platform is employed. OpenStack consists
of components responsible for the establishment and manage-
ment of VMs of which the most important one is Nova. Each
of the virtual S-MDMSs in this experiment can have one of the
four flavors shown in Table III. Small is the primary flavor of
S-MDMSs. By running the following command, each virtual
S-MDMS can be resized:

nova resize <VM Instance Name> <new flavor>

For example, by running the command nova resize P1

m1.medium, the P1 flavor can be changed to medium.

Table IV shows the DR, rejection rate, and flavor of each of
the S-MDMSs over time. Unlike the second experiment, this
time our method obtains a DR close to the offered load for
the entire 600 seconds. This is because P2 is scaled up at the
200th and 400th second and scaled down at the 300th and 500th

second.
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Table IV
OPENAMI PERFORMANCE WITH VIRTUAL S-MDMSS

Time (s) 0-100 100-200 200-300 300-400 400-500 500-600

Offered load (rps) ∼ 150 300 450 150 450 300

Total DR of S-MDMSs (rps) ∼ 147 295 447 148 446 298
Rejection rate (%) ∼ 2 1.66 0.66 1.33 0.88 0.66

P1 flavor small small small small small small
P2 flavor small small medium small medium small
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Figure 12. OpenAMI performance with the S-MDMS failure

D. Fourth Experiment: S-MDMS Failure

In addition to immediate congestion, the sudden failure of
one of the S-MDMSs is another reason why S-MDMSs may
face overload. The results of this experiment are presented in
Fig. 12. P1 faced failure at the 30th second and goes back to
service again at the 70th second. Two scenarios are tested:

• Scenario 1: neither of the two S-MDMSs is virtual,
• Scenario 2: both of the S-MDMSs are virtual.
Up to the 30th second, the average DR of both scenarios is

295 rps. With the failure of P1 at the 30th second, only P2 keeps
on providing service. In this situation, OpenAMI in Scenario 1
intends to prevent the DR drop by using the maximum capacity
of P2 (200 rps). For this reason, resources utilization of P2
increases. However, the average DR decreases down to about
194 rps and the rejection rate increases up to 98 rps. In Scenario
2, the required conditions for scaling up P2 at the 30th second
are provided. By doing so, DR remains without a drop and at
about 295 rps. With the reactivation of P1 at the 70th second
and by returning to the normal state, the load is distributed
between both S-MDMSs. Besides, DR maximizes and resource
utilization of both S-MDMSs becomes equal.

E. Fifth Experiment: Comparison with Other Algorithms

In this section, we compare OpenAMI with TLWL, HWAR,
HWMP and SAMba. For this end, we increase the offered load
(and inevitably the SMs to 45). The algorithms are compared
with respect to their request delivery ratio, end-to-end delay,
established sessions and resource consumption. The results are
provided in Fig. 13. Part (a) of this figure demonstrates that
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Figure 13. Comparison with other algorithms

OpenAMI has been able to achieve a request delivery ratio of
one regardless of the number of SMs, whereas this decreases
for the other methods. This is the result of the integrated
architecture of OpenAMI, which has provided a global view
of the entire network and global load balancing. The other
advantage of OpenAMI is that load balancing in this method
is performed on the links, middle nods and MDMSs. This
is in contrast to the other methods, where balancing is only
performed over the load between MDMSs or links.

Among the SAMba, HWMP, HWAR, and TLWL methods,
the SAMba has the highest request delivery ratio, since, as
previously mentioned, this method is aware of the session,
while the TLWL and HWAR methods only seek to estimate
MDMSs load (without considering the number of sessions or
the capacity of links and intermediate nodes). In other words,
as stated in [29], the SAMba uses the Minimized Session Set
Algorithm (MSSA), which functions fairly cleverly. HWMP
seeks to distribute load among the links by using airtime link
metric. So, it does not succeed in getting the request delivery
ratio like the SAMba.

Fig. 13 (b) shows the EED. It is clear from the figure that
EED in OpenAMI is 15ms on average, which is significantly
shorter than the others. We can also deduce from Fig. 13 (a) and
(b) that by increasing the number of SMs, the other methods
would face request delivery rate reduction (or EED elevation).

Fig. 13 (c) illustrates the number of established sessions. It
is evident that in OpenAMI, the number of established sessions
increases with the growth of SMs. This indicates that OpenAMI
has truly achieved a request delivery ratio of one. Moreover,
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Table V
COMPARISON BETWEEN OPENAMI AND ILP MODEL 1

k = 50, w = 10 k = 60, w = 15 k = 70, w = 20 k = 80, w = 25
n = 8,m = 11 n = 10,m = 15 n = 12,m = 19 n = 14,m = 23

Time to answer (ms) ILP 99 985 3921 10087
OpenAMI 108 156 198 243

Objective Function (
∑

(cpup))
ILP 201 324 422 566

OpenAMI 198 319 418 561
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Figure 14. Objective function and time to answer of OpenAMI and ILP

it indicates that all AMI sessions that were supposed to be
established between SMs and MDMSs were initiated without
imposing any additional delay.

Fig. 13 (d) demonstrates the resource consumption of P1
and P2 in OpenAMI and SAMba. It is evident that resource
consumption of P1 and P2 is equal in OpenAMI. This further
indicates that load has been fairly distributed in the network
and between the MDMSs. This is in contrast to SAMba, where
resource consumption is significantly different for P1 and P2
(especially after 20 SMs).

F. Sixth Experiment: ILP Solution Assessment

In this section, we intend to assess the optimal solution
(ILP model 1) for limited cases (limited S-SMs and S-MDMSs
as sources and destinations) of the problem. Given that the
problem is NP-hard, the optimal solution cannot be achieved
in polynomial time. Hence, increasing the size of the problem
exponentially increases the time of ILP model 1.

For this test, k and w are set to 50 and 10, respectively,
which are connected based on the topology in Fig. 1. In this
manner, n and m are 8 and 11. Moreover, δm, δs and δe are
100, 90 and 80, respectively. Besides, C is set to 500 and the
remaining configuration is the same as that of section 5 (α and
β are chosen as 0.65 and 0.95, respectively. Moreover, ρ and
µ are chosen as 30 and 0.8). Finally, to solve ILP model 1 we
used CPLEX solver [36]. The results are depicted in Fig. 14
and it is clear that OpenAMI is able to closely resemble the
result of ILP.

In Table V, the solution value and time is provided for
various inputs for the two methods. As is evident in the table,
response time significantly increases for ILP method, whereas
OpenAMI has a slow growth (in fact OpenAMI is a heuristic
method to solve global load-balanced routing problem in an
AMI communication network).

VI. CONCLUSION AND FUTURE WORK

The growing number of SMs together with their constant
increase in data rate impose a serious problem on the traditional

AMI network in SG. Therefore, a main challenge is to build
a scalable communication architecture to route and balance
the huge amount of data generated by those SMs. This paper
initially introduces the global load-balanced routing problem
in the AMI communication network, which is NP-hard due to
limitations of MDMSs and network resources. A novel SDN-
based AMI communication network (OpenAMI) is then pro-
posed. Moreover, an extension of OpenAMI for a virtualization
environment based on NFV technology is presented. OpenAMI
is implemented on a real test bed which includes Open vSwitch,
Floodlight controller, and OpenStack; its performance is evalu-
ated by extensive experiments and scenarios. The results show
that the proposed architecture has low resource overhead and
satisfactory performance. In addition, it can take advantage of
flexible scale-out design for application deployment.

An important notion which can be considered as a future
work is to adopt a more advanced policy of MDMS load
estimation and resource scaling. Furthermore, the application
of OpenAMI for providing various SG services is a promising
new research direction.
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